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Abstract

A new method for the calculation of interface pressure for front capturing methods is developed. This method is

based on the calculation of the pressure force at each interfacial cell face using the exact pressure due to the portion

of the cell face that is occupied by each fluid. Special formulations for the pressure in the interfacial cells are derived

for different orientations of an interface. This method (referred to as pressure calculation based on the interface location

(PCIL)) is applied to the time evolution of a two-dimensional initially stagnant liquid drop in a gas, as well as, a gas

bubble in liquid (gravity effects are not considered). A two-fluid, PLIC-VOF method is used to simulate the flow numer-

ically. Both the continuum surface force (CSF) and the continuum surface stress (CSS) methods are used. A wide range

of Ohnesorge numbers and density and viscosity ratios of two fluids are tested. It is shown that the new method reduces

the spurious currents by up to three orders of magnitude for the cases tested.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In simulation of interfacial flows with fixed mesh, determination of the interface pressure and surface

tension has been one of the most troublesome and challenging issues. Surface tension forces appear in equa-

tions by imposing a jump condition across the interface. This condition is difficult to apply numerically and

has been the center of attention by many researchers.
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Surface tension may be implemented by one of the following two methods. One is by applying the

surface tension as a boundary condition along the free surface. For a staggered fixed mesh, an inter-

polation scheme is used to ensure that the computed surface pressure is correct in relation to the

cell-centered pressure. If it is not, the solution is iterated until the final pressure field is within some

tolerance value of the previous iteration. If it is, the correct pressure solution is obtained, and the over-
all Navier–Stokes solution is advanced to the next time level. This technique is not popular for two

reasons. First, the cost of multiple iterations at each time-step is high. In most cases, the time-step

restrictions, which would ensure stability, require very small values. Therefore, these additional itera-

tions at each time-step would increase the overall computational time needed to obtain a solution. Sec-

ondly, in order to properly implement this method, the exact location of the free surface at the next

time step is required. Although the interface location can be determined through various methods

(i.e., using VOF [1–15] or level set reconstruction techniques [16]), its value is only known at the exist-

ing time-level, and not at the next-time level.
In order to circumvent the problems associated with the pressure calculation at the exact interface

boundary, Brackbill et al. [17] have developed a method referred to as the continuum surface force

(CSF) method. This method replaces the need to know the exact location of the free surface by converting

the surface tension forces into an equivalent volume force, which is added to the Navier–Stokes equations

as an additional body force. This force has smoothed properties and acts only in a finite transition region

across the interface. Note that the transition region is the region which contains the interfacial cells and

their immediate neighboring cells. The CSF model reformulates surface tension into an equivalent volume

force Fst as follows:
F stðxÞ ¼ r
Z
S
jndðx� xsÞ dS; ð1Þ
where r is the surface tension coefficient, j is the surface curvature, n is the unit normal to the surface in the

outward direction, d(x � xs) is the Dirac delta function, and xs are points on the interface S. Surface tension

is then incorporated into the flow equations simply as a component of the body force.

The original discretization of Fst proposed by Brackbill et al. [17] led to the formation of artificial veloc-

ities (the so-called ‘‘spurious’’ or ‘‘parasitic’’ currents) due to an inaccurate representation of surface ten-
sion terms and associated pressure jump. These currents are strongly growing vortical flows in the

transition region. In a paper by Brackbill and Kothe [18], they showed that the original CSF formulation

produces a vorticity source term and concluded that these currents will disappear as the transition region

approaches zero. In an effort to reduce these effects, Aleinov and Puckett [19] suggested another formula-

tion of Fst, which has been adopted by Bussmann et al. [20]. In their formulation, first, the surface force per

unit volume is computed within each of the interface cells and it is placed at the center of the cell:
F st
i;j;k ¼ rji;j;k

Ai;j;k

vi;j;k
ni;j;k; ð2Þ
where Ai,j,k is the surface area of the fluid contained within the cell and vi,j,k is the cell volume. This force is

then smoothed by convolving it with a smoothing kernel, K:
~F
st

i;j;k ¼ KF st
i;j;k: ð3Þ
Significant effort has been made to improve the surface tension force predictions by using higher order ker-

nels for more accurate estimations of the curvature, j, and the unit normal vector, n, to the interface. In the

original CSF method [17], the kernel is a quadratic B-spline. There are several other Kernels [21–23], but

the most widely used smoothing kernel is that proposed by Peskin [24]. Lafaurie et al. [25] developed a new



156 E. Shirani et al. / Journal of Computational Physics 203 (2005) 154–175
method referred to as the continuum surface stress, CSS, method, in which they converted the volumetric

force used in the CSF method into a stress term. In the CSS model, capillary force are represented as a

stress tensor T, which is tangential to the interface and it is given by
T ¼ �rðI� n� nÞdS ; ð4Þ

where I is the unit tensor dij and dS is a delta function. Then the capillary force is written as:
Fst ¼ �r � T: ð5Þ

The CSS method also produces numerical spurious effects [25]. In fact, neither CSF nor CSS models pro-

duce very accurate solution in capillary dominated fluid problems. In problems where the surface tension
forces dominate the viscous forces, the spurious currents can cause interface oscillations and deform or de-

stroy the interface.

Popinet and Zaleski [26] have reduced the spurious currents considerably by using a Lagrangian advec-

tion marker to advect the interface. The pressure is calculated based on the location of the interface at each

cell face. Two values for the pressure at each interfacial cell face are determined using the pressure at the

two neighboring cells. A new source term is added to the Poisson equation to accurately calculate the pres-

sure. Their method resulted in a more accurate calculation of the surface tension force and the associated

pressure jump [26]. Their work, however, is currently limited to the markers method. Meier et al. [27] have
also developed a new method to reduce the spurious currents. Their method is based on improving the cur-

vature calculation. They have used an estimator function, which is tuned with a least-squares-fit against the

reference data. They have indicated that their method is 3–7 times more accurate than the CSF method of

Brackbill, etc. [17]. They have been able to reduce the intensity of the spurious currents by up to 100 times.

Although their method calculates the interface curvature more accurately, the pressure force at each cell

face is still poorly calculated. This will be further discussed later in this paper. Renardy and Renardy

[28] have introduced PROST, a VOF-based algorithm, which uses a least-square fit to the volume fractions

to determine the interface properties. Their model significantly reduces the spurious currents, even without
any smoothing of the volume fractions. Jamet et al. [29] used a second-gradient method to reduce the trun-

cation error in the computation of the energy exchanges between the surface and the kinetic energies. By

ensuring energy conservation, the parasitic currents were reduced drastically.

Although the above methods reduce the spurious currents by some orders of magnitude, the methods are

expensive, somewhat complicated and they may not accurately calculate the pressure force at the interface.

Here, we present a new method, which we refer to as the pressure calculation based on the interface location

(PCIL). We will show that by an accurate implementation of the pressure forces at the interface cells, it is

possible to eliminate a significant portion of the spurious currents. By using this new method the spurious
currents can be reduced by up to three orders of magnitude. Unlike the above-mentioned methods, PCIL

model is simple and extremely inexpensive (very limited extra calculations are needed to implement PCIL

model). The new method is directly derived by applying the momentum balance on each interface cell. The

derivations and relations given in this paper are for two-dimensional problems, however, the method can be

extended to three-dimensional cases. In the next section, we will present the problem formulation, followed

by our method for the calculation of the interface pressures. The new method is then tested on the time

evolution of initially stationary drops and bubbles.
2. Problem formulation

We will solve the unsteady, incompressible Navier–Stokes equations in two dimensions for two fluids

with interfaces. A volume-of-fluid, VOF, method along with a piecewise linear interface calculation, PLIC,

is used to capture the fluid interfaces. It is assumed that the velocity field is continuous across the interface,
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but there is a pressure jump at the interface due to the presence of the surface tension. The governing equa-

tions describing this problem are:
oui
oxi

¼ 0; ð6Þ

oF
ot

þ ui
oF
oxi

¼ 0 ð7Þ
and
oqui
ot

þ oquiuj
oxj

¼ � op
oxi

þ F st � îþ l
o2ui
ox2j

þ qgi; ð8Þ
where uis are the velocity components, and t and xi are time and space coordinates. F is the volume fraction

of the fluid, which is zero where only fluid 2 exists and is one where only fluid 1 exits. p is the pressure, î is
the unit vector in the ith direction and q and l are the fluid density and absolute viscosity, respectively, and
they depend on the densities and viscosities of each fluid as:
q ¼ q2 þ F ðq1 � q2Þ ð9Þ

and
l ¼ l2 þ F ðl1 � l2Þ; ð10Þ

where q1 and q2, l1 and l2 are densities and viscosities of fluids 1 and 2, respectively. In addition, the fol-

lowing Poisson equation needs to be solved:
o

oxi

op
oxi

� �
¼ � o

oxi

o

oxj
ðquiuj � 2lSijÞ

� �
; ð11Þ
where Sij is the rate of strain tensor.
3. Formulation of the pressure at the interface

Consider a two-dimensional interface cell shown in Fig. 1, in which fluid 1 and 2 are separated by an
interface line. We denote fluid 1 as the heavier fluid and fluid 2 as the lighter fluid throughout this paper.

If the surface tension forces are considered, then there would be a pressure jump at the interface, and the

two fluids will have different pressures.
p2R
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Fig. 1. An interface cell with cell face pressures along the x-axis.
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In order to calculate the pressure force exerted on the cells, we will apply the momentum balance to each

cell. Consider the pressure force acting along the x-direction on the cell in Fig. 1. The pressure force per unit

area on the left side of the cell is, FpL:
F pL ¼ pLDy
Dy

¼ p1L
lL
Dy

þ Dy � lL
Dy

p2L ð12Þ
or
F pL ¼ pL ¼ p1LHL þ ð1� HLÞp2L; ð13Þ

where pL is the average pressure on the left side, Dy is the length of the cell in the y-direction, lL is the length

of the cell side which is in contact with fluid 1, and HL ” (lL/Dy). Eq. (13) may be rearranged as:
pL ¼ p2L þ HLðp1L � p2LÞ: ð14Þ

The pressure difference in the parentheses represents the pressure jump due to the surface tension. Similar

relations can be obtained for the pressure force on the right (R), top (T) and bottom (B) sides:
pR ¼ p2R þ HRðp1R � p2RÞ; ð15Þ

pT ¼ p2T þ HTðp1T � p2TÞ ð16Þ

and
pB ¼ p2B þ HBðp1B � p2BÞ ð17Þ

or in general,
pk ¼ p2k þ Hkðp1k � p2kÞ; ð18Þ

where Hk (k = L, R, T, B) is a non-dimensional parameter that denotes the location of the interface at cell

side k. The value of Hk is equal to the relative height (area in 3-D) of a cell side k, which is in contact with
fluid 1. The value of Hk is between zero and one in the interface cells and it is one or zero in the full cells,

depending on being in fluid 1 or 2, respectively. Note that the value ofHk depends on the amount of the fluid

1 or 2, as well as, the interface orientation. The previous interface capturing methods have not consideredHk

in their calculation of pressure force. Based on our model, this means that the previous methods have as-

sumed thatHk = 1 everywhere. The above analysis shows that this assumption can be a source of error, espe-

cially in the cells with relatively large fraction of the lighter fluid (fluid 2), where the value of Hk is small.

For cell faces which are in contact only with fluid 1, H(Hk) = 1 and p = p1. For cell faces which are in

contact only with fluid 2, H(Hk) = 0 and p = p2. For cell faces which are in contact with both fluids,
0 < H(Hk) < 1 and p is between p1 and p2.

Similar results can be obtained in a three-dimensional system, whereHk becomes the ratio of the cell side

‘‘area’’ that is in contact with fluid 1 to the whole cell side ‘‘area’’. Eqs. (14)–(18) are held for the three-

dimensional case as well, except that there will be six different Hks, one for each cell face.

The pressure jump, ps, at any interface point is related to the surface tension coefficient according to:
ps ¼ p1 � p2 ¼ rj; ð19Þ
where j is the interface curvature. Therefore, Eq. (18) becomes:
pk ¼ p2k þ Hkrj; ð20Þ

and the pressure force per unit area, Fpk, acting on an interfacial cell side, k, is obtained from Eqs. (13) and

(20):
F pk ¼ p2k þ Hkrj: ð21Þ
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The second term in the right-hand side of Eq. (21) is the normal force per unit area due to the pressure jump

or surface tension force,
Fst
s ¼ Hrjn: ð22Þ
Following Brackbill et al.�s [17] continuum surface force (CSF) model, the interface curvature and the sur-

face tension may be calculated as:
jðxÞ ¼ �r � ~nðxÞ ¼ r � r~F ðxÞ
jr~F ðxÞj

ð23Þ
and
F st
v ¼ rjdsn ¼ rjn

jr~F j
½F � ; ð24Þ
where the ~ (tilda) denotes filtered (smoothed) value, the square brackets denote the difference between the

maximum and the minimum values of the function inside the brackets, and F st
v is the volumectric surface

tension force. The above model produces an artificial acceleration in the lighter fluid when the density ratio

of the two fluids is large. This acceleration is the main source of producing spurious currents. Brackbill

et al. [17,30] recommended addition of a density scaling factor in order to reduce the formation of such

acceleration. Therefore, they proposed the following equation instead of Eq. (24):
F st
v ¼ rjdsn ¼ rjn

jr~F j
½F �

qðxÞ
½q� ; ð25Þ
where q(x) is the local value of the density obtained by Eq. (9) and [q] is the difference between the density

of the heavier and the lighter fluids. The density correction term (the second fraction in Eq. (25)) is added to

correct the force in the momentum equation. This dampens the acceleration of the lighter fluid in the cells

near the interface that contain small amounts of heavier fluid. The newly added fraction is not directly ob-

tained from any conservation law, but it is only postulated. We will later examine the effectiveness of this

term and will compare it with our PCIL model. The volumetric surface force, defined in Eq. (24), based on
our PCIL model (using Eq. (20)) becomes:
F st
v ¼ Hrjdsn ¼ Hrjn

j r~F j
½F � : ð26Þ
We will use this equation to compare our results with those of Eq. (25).

Another model, which is widely used, is that of Zaleski�s continuous surface stress (CSS) model [25,31–

33]. In this model, Eq. (25) is replaced with:
F st
v ¼ rjdsn ¼ rr � jrF jI�rF �rF

jrF j

� �
: ð27Þ
Again, using our PCIL model, the CSS model becomes:
F st
v ¼ Hrjdsn ¼ Hrr � jrF jI�rF �rF

jrF j

� �
: ð28Þ
We will compare the results of each of these models in the later sections. Note that in this paper the filtered

value of volume fraction, ~F , is used for the CSF model, whereas F is not filtered for the CSS model. This is

because, based on our experience, unfiltered values of F used in the CSF model result in inaccurate calcu-

lation of the surface tension forces. However, this is not the case for the CSS model. For simplicity, from

now on, we drop the superscript tilda in the formulas.
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4. Calculation of the interface function Hk

Consider a two-dimensional cell. In the piecewise linear interface calculation (PLIC) method, the inter-

face is approximated by a straight line of an appropriate inclination in each cell. The straight lines are not

connected to each other at the cell faces. That is, the interface line at each cell is determined independent of
the neighboring interface lines, and their ends need not necessarily be connected at the cell faces. Each line

is determined so that it is perpendicular to an interface normal vector, and it divides the cell surface into

two regions that match the given F for the cell (see [8] for details). The interface normal vector n (a unit

vector perpendicular to the interface pointing to fluid 2) for each cell is determined using the gradient of F:
n ¼ � rF
jrF j ; ð29Þ
where the gradient of F at each point is calculated using the values of F in its immediate nine neighboring

points. Assuming Dx = Dy = h, the x and the y components of the gradient of Fi,j are:
mx;i;j ¼ bF iþ1;jþ1 � F i�1;jþ1 þ 2ðF iþ1;j � F i�1;jÞ þ F iþ1;j�1 � F i�1;j�1c=h ð30Þ

and
my;i;j ¼ bF iþ1;jþ1 � F iþ1;j�1 þ 2ðF i;jþ1 � F i;j�1Þ þ F i�1;jþ1 � F i�1;j�1c=h: ð31Þ

And the x and the y components of the unit normal vector are:
nx;i;j ¼ � mx;i;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x;i;j þ m2
y;i;j

q ð32Þ
and
ny;i;j ¼ � my;i;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x;i;j þ m2
y;i;j

q ; ð33Þ
where nx and ny are the components of n. Once the normalized unit vector n is calculated, a straight line is

positioned perpendicular to it in such a way that it matches the value of F in the cell.

Fig. 2 shows that depending on the orientation of the interface, eight different cases may occur. The nor-

mal vector angle, h, (shown in Fig. 3) can take any value between zero and 2p. We have obtained the rela-

tion for H for the case when n is in the first octant (0 6 h 6 p/4). By mirroring appropriately on the x and y

axes, and the bisector between them, equivalent situations are obtained when n is in the other octants. Figs.

2 and 3 show that the area filled with fluid 1 can be triangle, quadrilateral or pentagon, depending on the

values of F, nx and ny in the cell. The limiting values of F for the cases when n is in the first octant and
nx > ny, are:
F lim;1 ¼
ny
2nx

and F lim;2 ¼ 1� F lim;1: ð34Þ
For a general case, where n is arbitrary, the limiting values may be calculated as:
F lim;1 ¼
nmin

2nmax

and F lim;2 ¼ 1� F lim;1; ð35Þ
where
nmin ¼ minðjnxj; jny jÞ and nmax ¼ maxðjnxj; jny jÞ: ð36Þ

In order to calculate Hk on each side of a cell, the locations of a and b, the two ends of the straight line in

each cell need to be determined. a and b are determined such that the cross product n� ab
�!

is positive. Note

that if the length of the cell sides are equal to one, then the values ofHks are equal to a and b. Therefore, Hk



Fig. 2. Different interface configurations. The shaded area represents fluid 1 and the blank area represents fluid 2. (a) |nx| P |ny|, nx > 0,

ny P 0 (b) |nx| P |ny|, nx < 0, ny 6 0 (c) |ny| > |nx|, nx > 0, ny P 0 (d) |ny| > |nx|, nx < 0, ny 6 0 (e) |nx| P |ny|, nx < 0, ny P 0 (f) |nx| P |ny|,

nx > 0, ny 6 0 (g) |ny| > |nx|, nx < 0, ny P 0 (h) jny| > |nx|, nx > 0, ny 6 0.

n

triangle quadrilateral pentagon
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Fig. 3. Different interface configurations.

Fig. 4. A cell with normal in the first octant. The darker area is fluid 1. Hks are shown for unit length cell.
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for each cell face follows immediately from a first or a second order equation. For the case when n is in the

first octant, let Hks at the bottom, right, top and left sides of the cell be represented by H1, H2, H3, and H4,

respectively (see Fig. 4). They can be described according to the following relations:

For F 6 Flim,1(triangle):
Table

Values

H valu

HB

HR

HT

HL
H 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F

nmin

nmax

r
; H 2 ¼ 0; H 3 ¼ 0; H 4 ¼

2F
H 1

: ð37Þ
For Flim,1 < F 6 Flim,2(quadrilateral):
H 1 ¼ F þ nmin

2nmax

; H 2 ¼ 0; H 3 ¼ F � ny
2nx

; H 4 ¼ 1: ð38Þ
For F > Flim,2(pentagon):
H 1 ¼ 1;H 2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� F Þ nmax

nmin

r
; H 3 ¼ 1� 2ð1� F Þ

1� H 2

; H 4 ¼ 1: ð39Þ
Values of Hks at the top, bottom, left and right sides of a cell, HT, HB, HL, HR, with an arbitrary inter-

face normal vector are obtained from the above H1, H2, H3, and H4 by mirroring approximation. Depend-

ing on the local value of F, the values of Hks are chosen from one of Eqs. 37. Fig. 2 shows all of the possible

interface configurations. The results depend on the relative values of nx and ny, and are given in Table 1.
Note that the calculation of Hk does not need extra operation in VOF method, since the values of nx, ny, a

and b are already calculated during the interface reconstruction process.

Except for the cell faces at the boundaries of the computational domain, each cell face is adjacent to

two of the other cells. Thus, two values are calculated for Hk, one from each of the interior cell faces.
1

of Hs at the cell faces corresponding to the configurations in Fig. 2

es Case

nx P 0, ny > 0 nx 6 0, ny > 0 nx 6 0, ny < 0 nx P 0, ny < 0

jnxjP jnyj jnyj > jnxj jnxjP jnyj jnyj > jnxj jnxjP jnyj jnyj > jnxj jnxjP jnyj jnyj > jnxj
H1 H4 H1 H4 H3 H2 H3 H2

H2 H3 H4 H1 H4 H1 H2 H3

H3 H2 H3 H2 H1 H4 H1 H4

H4 H1 H2 H3 H2 H3 H4 H1

i,j  i-1/2,j i-1,j 

HR(i-1,j)
HL(i,j) 

Fig. 5. Two adjacent cells with an interface.
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For example, for the left side of the cell i, j, we have HL,i,j, and for the right side of the cell i � 1, j, we have

HR,i � 1,j (see Fig. 5). If the interface lines are not connected to each other, as shown in Fig. 5, the two val-

ues of Hk may be different. Based on several different trials, we have found that a simple averaging method

works well to eliminate this problem. That is:
Fig.
Hki�1=2;j ¼ 1
2
ðHRi�1;j þ HLi;jÞ: ð40Þ
This prevents having internal pressure forces as source terms in the flow field. It is worth noting that for

each side of the cell, one should use the corresponding value of Hk for the same side (Eq. (40)). In other

words, one cannot calculate one H for the center of each cell and use it for all sides of the same cell.

The PCIL method explained above may be summarized by the following steps:

1. Determination of the intersection locations of an interface line with the cell faces.

2. Calculations of the non-dimensional parameter Hk, by normalizing the intersection locations with the

cell face length.

3. Averaging the two values of Hks obtained for both sides of each internal cell face, Eq. (40).

4. Multiplying the value of Hk to the capillary forces used in the momentum equation, Eq. (26) or (28).

Note that the x-momentum equation is applied at the cell faces perpendicular to the x-axis, at point

i � 1/2, j shown in Fig. 5 and the y-momentum equation is applied at the cell faces perpendicular to

the y-axis, at point i, j � 1/2.
5. Results and discussions

We have tested the PCIL method on the temporal evolution of a two-dimensional liquid drop. A circular

drop of a fluid in the absence of gravity is placed inside of a second fluid. The initial velocities of both fluids

are set to zero. The drop radius, r, the fluid densities, q1 and q2, the viscosities, l1 and l2, and the surface
tension coefficient, r, are the main physical variables (subscript 1 stands for the drop and 2 for the

surrounding fluid). The number of grid points, the time step, Dt, and the grid size, h, are the numerical
6. Spurious currents with the same velocity scales, for CSS model without PCIL model (left) and with PCIL model (right).
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parameters. The computational grid is fixed, rectangular and uniform. The code SURFER [25] is modified

and used in this work. The details of the numerical method based on VOF-PLIC and Chorin�s projection
method for a semi-implicit Navier–Stokes solver, which have been used in this code, are given in [25,31,32]

and are not repeated here. Two different continuum methods, namely the CSF [17] and the CSS [25] meth-

ods, for modeling the interfacial tension are used in this work. We have examined the performance of these
methods with and without the PCIL model. Number of the grid points, the grid size, the time step, and the

radius of the drop are held fixed. We will investigate the effects of variation of physical properties (i.e., den-

sity, viscosity and surface tension coefficient) on the flow field.

If the computed pressure gradient at the drop interface does not balance with the surface tension forces,

spurious currents will be formed. These currents tend to grow with time. The spurious currents are also

affected by the grid size as shown by Renardy and Renardy [28], and Meier et al. [27]. Therefore, the grid

dependency has also been examined. The drop radius is taken as 0.25L, where L is the domain length in the
Fig. 7. Spurious currents (with the same velocity scales) using model (a) without and (b) with density modification. Figures on the left

are without PCIL model and those on the right are with PCIL model.



Table 2

Values of the maximum and the norm velocities of spurious currents using CSS model

Number of time steps Vmax Vnorm

w/o PCIL with PCIL w/o PCIL with PCIL

1000 1.067e � 2 3.166e � 5 2.611e � 4 3.483e � 6

4000 4.162e � 2 1.261e � 4 1.032e � 3 1.393e � 5

8000 7.806e � 2 2.515e � 4 2.017e � 3 2.787e � 5

Table 3

Values of the maximum velocities of spurious currents for CSF model

Number of time steps Without density correction With density correction

w/o PCIL with PCIL w/o PCIL with PCIL

1000 3.619e � 2 3.273e � 5 1.482e � 3 3.118e � 5

4000 1.31e � 1 1.308e � 4 5.873e � 3 1.246e � 4

8000 2.31e � 1 2.610e � 4 1.155e � 2 2.488e � 4

Table 4

Values of the norm of the velocities of spurious currents for CSF model

Number of time steps Without density correction With density correction

w/o PCIL with PCIL w/o PCIL with PCIL

1000 1.421e � 3 4.286e � 6 2.043e � 5 3.486e � 6

4000 5.638e � 3 1.713e � 5 1.208e � 4 1.394e � 5

8000 1.103e � 2 3.422e � 5 2.391e � 4 2.785e � 5

Fig. 8. Spurious currents with different velocity scales, for CSS model without PCIL model (left) and with PCIL model (right).
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Fig. 9. Spurious currents (with different velocity scales) using CSF model (a) without and (b) with density modification. Figure on the

left are without PCIL model and those on the right are with PCIL model.

166 E. Shirani et al. / Journal of Computational Physics 203 (2005) 154–175
x-direction and it is set equal to one. A 66 · 66 mesh and a time step of 10�5 is chosen for all of the cal-

culations. This time step is determined based on conducting a series of computations to obtain independ-

ency of the solution to the time steps.

From the dimensional analysis, the above-mentioned physical properties are grouped into three non-

dimensional parameters:
Oh1 ¼
l1ffiffiffiffiffiffiffiffiffiffi
rq1r

p ;
q1

q2

and
l1

l2

; ð41Þ
where Oh1 is Ohnesorge number based on the properties of fluid 1 contained in the drop. Following Popinet

and Zaleski [26] and Scardovelli and Zaleski [33], for a drop with a constant radius and from the
dimensional analysis, the velocity of the spurious currents is only a linear function of the surface tension
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Fig. 10. (a) Maximum and (b) norm of spurious velocities using CSS model.
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Fig. 11. (a) Maximum and (b) norm of spurious velocities using CSF model.
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coefficient and viscosity, i.e., u � r/l, and it is not a function of density. Thus it is expected that as the den-

sity of the fluid is changed, the velocity of the spurious currents remains constant.
A wide range of values including the properties of water (fluid 1) and air (fluid 2) are used for the above

parameters. The results are presented in terms of the norms of the velocity (mean values of the absolute

velocity) and the maximum values of the velocity of the spurious currents as a function of various variables.

Figs. 6 and 7 show the spurious currents for a water droplet in air (i.e., q1/q2 = 830.545, l1/l2 = 54.945).

The Ohnesorge number based on the water properties (Oh1) is 1.17 · 10�4. In these cases, the number of



Fig. 12. Spurious currents (with different velocity scales) for a bubbles using CSS model. Figure on the right is without PCIL model,

and one on the right is with PCIL model.
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time steps, N, is 8000. The same scale for the velocity vectors is used in these figures. Fig. 6 shows the results

using CSS, with and without the PCIL model. Addition of the PCIL model results in a much smaller spu-

rious currents. The maximum and the norm velocities of the spurious currents for three time steps are given

in Table 2. By using PCIL model, the maximum and the norm velocities of the spurious currents decrease
by up to three orders of magnitude.

Fig. 7 shows the velocity vectors for the spurious currents at three different times using the CSF, with

and without the PCIL model. We have compared the results with and without the density correction factor,

the second fraction in Eq. (25). For these cases, the maximum and the norm velocities of the spurious cur-

rents at three different time steps are given in Tables 3 and 4, respectively. Figs. 8 and 9 are similar to those

in Figs. 6 and 7, but each figure has a different velocity scale. These figures show that the flow structure of

the spurious currents is different when the PCIL is used. With PCIL model, the magnitude of the spurious

currents in both fluids are almost the same, whereas without the PCIL model, the spurious currents are
dominant in the lighter fluid.

Figs. 10 and 11 show the velocities of the spurious currents as a function of time for the above six cases.

As can be seen the velocities of spurious currents produced by both CSS and CSF models are reduced by

orders of magnitudes when the PCIL model is used. In the CSF model, when the PCIL model and the den-

sity ratio correction are not used, the spurious currents are larger than that of the CSS model. Once the

density correction ratio is added, the spurious currents become smaller, but they are still significant. By

implementing the PCIL model the velocities of the spurious currents drop by about two orders of magni-

tude. Note that in all the cases studied, the spurious currents still tend to increase with time. From Fig. 7
and also from the third and the fifth columns of Tables 3 and 4, it can be seen that the implementation of

the PCIL factor is enough to reduce the spurious currents and there is no need to implement the density

ratio correction in addition to the PCIL. Therefore, the PCIL model is a better alternative to the density

ratio correction, which is somewhat a heuristic relation and does not reduce the spurious currents as much

as the PCIL model.

In order to show that there is symmetry in the PCIL method, and the method works for all cases regard-

less of where fluids one and two are located, we have repeated the calculations for a bubble inside a liquid

(the inverse of a drop). The flow condition is similar to the drop case except that fluid one is replaced by
fluid two and vice versa. The results for the spurious currents produced around the interface of the bubble,



Fig. 13. Spurious currents (with different velocity scales) for a static bubble using CSF model. (a) Without and (b) with density

modification. Figures on the left are without PCIL model and figures on the right are with PCIL model.

Table 5

Values of the maximum and the norm of the velocities of spurious currents for a bubble

Case CSS model CSF model w/o density

correction

CSF model with density

correction

w/o PCIL with PCIL w/o PCIL with PCIL w/o PCIL With PCIL

Maximum velocity 5.063e � 1 8.604e � 3 2.046e � 1 3.934e � 4 8.647e � 2 3.345e � 4

Norm velocity 9.363e � 3 2.550e � 4 5.087e � 3 2.317e � 5 1.318e � 3 1.938e � 5
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similar to that of Figs. 8 and 9, are shown in Figs. 12 and 13. In this case, as we expected, when the PCIL

model is not used, the spurious currents are mainly inside of the bubble where the gas is located. But after

we apply the PCIL model, the spurious currents are significantly reduced. The magnitude of the currents
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inside and outside of the bubble is about the same. The magnitude of the maximum and the norm velocities

of the spurious currents, at the time step of 8000, for the above-mentioned six cases, are given in Table 5. As

can be seen, the velocities reduce by several orders of magnitude as we use the PCIL model. The rest of the

results presented below are for a liquid drop.

Fig. 14 shows the relative error in calculation of pressure as a function of number of time steps for dif-
ferent cases. The relative error is defined as:
no of time steps
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error ¼
ðp1 � p2Þ � r

R
r
R

; ð42Þ
where p1 and p2 are the mean values of pressure inside and outside of the drop. Note that if the pressures

p1 and p2 were calculated exactly, the value of the error would be zero. Fig. 14 shows that all six cases

examined calculate the pressure rather accurately and the error is less than 3%.

Effects of fluid property ratios, namely, density and viscosity ratios, and the Ohnesorge number are
considered here. Figs. 15 and 16 show the maximum and the norm velocities of the spurious currents as



10-6 10-5 10-4 10-3 10-2 10-1

Oh1

10-10

10-8

10-6

10-4

10-2

100

N
o

rm
 (

V
)

CSF w/o PCIL
CSF with PCIL
CSS w/o pCIL
CSS with PCIL

Fig. 18. Norm of spurious velocity as a function of Ohnesorge number.

100 101 102

mu

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

vm
ax

CSF w/o PCIL
CSF with PCIL
CSS w/o PCIL
CSS with PCIL

Fig. 19. Maximum spurious velocity as a function of viscosity ratio.

172 E. Shirani et al. / Journal of Computational Physics 203 (2005) 154–175
a function of density ratio for CSS and CSF models, respectively. Results for cases with and without the

PCIL model are presented. The viscosity ratio (l1/l2) is 54.945 and Oh1 = 1.17 · 10�4 (equivalent to that

of a water drop in air). These figures show that as the density ratio increases, the velocity of the spurious

currents remains constant when PCIL is used, while it increases when it is not used. This indicates that

PCIL model is in agreement with the results of the dimensional analysis, namely, u � r/l, which shows that

velocity does not change with density. Figs. 15 and 16 show that PCIL model may be used to obtain rea-

sonable results for high density ratios without generating extra spurious currents.
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Figs. 17 and 18 show the maximum and the norm velocities of the spurious currents as a function of the
Ohnesorge number for the CSS and the CSF models. Results for both cases with and without the PCIL

model are presented. In these figures, the density ratio (q1/q2) is 830.545 and the viscosity ratio (l1/l2) is
54.945. It is shown that the spurious velocities decrease by two orders of magnitude when the PCIL is used.

As Oh1 increases, the spurious velocities decrease by a power law. The variation of the velocity with Oh1 is

also in agreement with the dimensional analysis which indicates u � r/l.
Figs. 19 and 20 show the maximum and the norm velocities of the spurious currents as a function of

viscosity ratio for the CSS and the CSF models, respectively. Again, results for both cases with and without

the PCIL model are presented. In these figures, the density ratio (q1/q2) is 830.545 and Oh1 = 1.17 · 10�4.
Here, l1 has been changed and in order to keep Oh1 constant, the surface tension coefficient is changed

accordingly. It is shown that the spurious velocities decrease by more than two orders of magnitude when

the correction is applied. As the viscosity ratio increases, the spurious velocities increase by a power law.

This variation is also in agreement with the dimensional analysis which indicates that u � r/l [26,33].
6. Conclusions

A new method for the calculation of the pressure force at the interface cells for VOF based methods is

presented. In this method, first the intersection locations of an interface with the interfacial cell faces are

determined. The area of a cell face, which is in contact with the heavier fluid, is normalized with the cell

face area to obtain a factor H. Then, the two values of Hs obtained from the cells on both sides of each

internal cell face are averaged. Finally, the capillary force used in the momentum equation is corrected

by multiplying it by the factor H determined for the cell faces. The new interface volumetric pressure force

defined for each cell is then obtained from the following equation:
F st ¼ HrjndS : ð43Þ

The new method is applied to modeling a drop and a bubble in a motionless fluid. It is shown that the veloc-

ities of the spurious currents decrease by more than two orders of magnitude. Variation of the velocity of
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the spurious currents with Ohnesorge number, density and viscosity ratios of the two fluids involved, are

examined. It is found that the variation with the Ohnesorge number and the viscosity ratio is a power

law. Changes in the density ratio do not affect the corrected version. However, the spurious currents dras-

tically increase with the density ratio when pressure force is not corrected. Although the spurious currents

are reduced by several orders of magnitude when the corrected pressure force is used, there are still some
currents in the flow. They increase with time at a rate similar to those in CSF and CSS methods but with

much smaller magnitudes. These currents may be further reduced by using a more accurate calculation of

normal vectors and the interface locations.
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